层次聚类算法 各种linkage
基本工作原理
给定要聚类的N的对象以及N*N的距离矩阵(或者是相似性矩阵), 层次式聚类方法的基本步骤(参看S.C. Johnson in 1967)如下:
将每个对象归为一类, 共得到N类, 每类仅包含一个对象. 类与类之间的距离就是它们所包含的对象之间的距离.
找到最接近的两个类并合并成一类, 于是总的类数少了一个.
重新计算新的类与所有旧类之间的距离.
重复第2步和第3步, 直到最后合并成一个类为止(此类包含了N个对象).
根据步骤3的不同, 可将层次式聚类方法分为几类: single-linkage, complete-linkage 以及 average-linkage 聚类方法等.
single-linkage 聚类法(也称 connectedness 或 minimum 方法):
类间距离等于两类对象之间的最小距离,若用相似度衡量,则是各类中的任一对象与另一类中任一对象的最大相似度。
complete-linkage 聚类法 (也称 diameter 或 maximum 方法):
组间距离等于两组对象之间的最大距离。
average-linkage 聚类法:
组间距离等于两组对象之间的平均距离。
average-link 聚类的一个变种是R. D’Andrade (1978) 的UCLUS方法, 它使用的是median距离, 在受异常数据对象的影响方面, 它要比平均距离表现更佳一些.
这种层次聚类称为“凝聚”法,由于它迭代合并所有分类。也有一种“划分”层次聚类法,与“凝聚”相反,它先将所有对象放在同一类中,并不断划分成更小的类,划分法一般很少使用。
整个聚类过程其实是建立了一棵树,在建立的过程中,可以通过在第二步上设置一个阈值,当最近的两个类的距离大于这个阈值,则认为迭代可以终止。另外关键的一步就是第三步,如何判断两个类之间的相似度有不少种方法。这里介绍一下三种:
SingleLinkage:又叫做 nearest-neighbor ,就是取两个类中距离最近的两个样本的距离作为这两个集合的距离,也就是说,最近两个样本之间的距离越小,这两个类之间的相似度就越大。容易造成一种叫做 Chaining 的效果,两个 cluster 明明从“大局”上离得比较远,但是由于其中个别的点距离比较近就被合并了,并且这样合并之后 Chaining 效应会进一步扩大,最后会得到比较松散的 cluster 。
CompleteLinkage:这个则完全是 Single Linkage 的反面极端,取两个集合中距离最远的两个点的距离作为两个集合的距离。其效果也是刚好相反的,限制非常大,两个 cluster 即使已经很接近了,但是只要有不配合的点存在,就顽固到底,老死不相合并,也是不太好的办法。这两种相似度的定义方法的共同问题就是指考虑了某个有特点的数据,而没有考虑类内数据的整体特点。
Average-linkage:这种方法就是把两个集合中的点两两的距离全部放在一起求一个平均值,相对也能得到合适一点的结果。
average-linkage的一个变种就是取两两距离的中值,与取均值相比更加能够解除个别偏离样本对结果的干扰。